List of Functions

- **GEMF_SIM**: This function generates a realization of an epidemic process over a network.
- **Post_Population**: Analyzes the output of GEMF_SIM function and calculates the population of each compartment (node state) through time.
- **Post_NodesState**: After executing GEMF_SIM, Post_NodesState function can be used to obtain the state of each individual node of network at different time instants.
- **GEMF_SIM_Prob**: This function generates several realizations of the epidemic process. The output of GEMF_SIM_Prob can be used to estimate the probability distribution of finding a node in different node states as a function of time.
- **Net_Import**: Reads a txt file that contains the information for a single layer network and produces the parameter Net which can be fed into the GEMF_SIM function as an input argument.
- **NetCmbn**: This function combines single-layer networks into a multilayer network.
- **Para_SIS**: Generates an argument Para from the specification of the SIS epidemic model. GEMF_SIM function can use the output of Para_SIS as an input argument.
- **Para_SAIS_2layer**: Generates the argument Para from the specification of the SAIS epidemic model over a two-layer network. GEMF_SIM function can use the output of Para_SAIS_2layer as an input argument.
- **NetGen_Geo**: Generates Net parameter for the random geometric graph.
- **NetGen_ER**: Generates Net parameter for the Erdos-Renyi random graph.

Description

- **GEMF_SIM**

\[
\text{lst} = \text{GEMF_SIM}(\text{Para, Net, } x_0, \text{maxNumevent, Runtime, } N)
\]

GEMF_SIM function uses the algorithm described in [cite] in order to generate one realization of an epidemic process over a network. In general each node of network can be in one of the \(M\) states (compartments) and the transition to another state depends on the state of the node and the state of its neighbors in different layers.

Input Arguments

1. **Para** The input Para is a list that contains the parameters which define the spreading model, \(\text{Para} = \text{list}(M, q, l, A_d, A_b)\). Here \(M\) and \(l\) are the number of compartments and the layers, respectively. \(q\) is a \(1 \times l\) matrix where \(q[1, s]\) is the influencer compartment for layer \(s\). The nodal based transition matrix \(A_d\), is a \(M \times M\) matrix with elements \(A_d[i, j]\) that specifies the nodal based transition rate from compartment \(i\) to \(j\). The other element of Para is \(A_b\) which is a \(M \times M \times l\) array. The element \(A_b[i, j, s]\) is the transition rate of a node from compartment \(i\) to \(j\) if it has a neighbor in layer \(s\) and the state of the neighbor is \(q[1, s]\).

2. **Net** Here Net is a list of elements that specifies the contact network, \(\text{Net} = \text{list}(\text{Neigh, I1, I2})\). \(I1\) and \(I2\) are \(l \times N\) matrices where \(l\) is the number of layers and \(N\) is the number of nodes in the network. \(\text{Neigh}\) is a list that contains \(l\) matrices where each matrix has 2 rows. The neighbors of node \(n\) in the layer \(s\) are the element of the vector \(v = \text{Neigh}[s][1, J1[s, n]] : I2[s, n]\). These are the nodes that can be potentially affected by the node \(n\). Moreover the weight of the link between node \(n\) and its neighbors, obtained from vector \(v\), are \(\text{Neigh}[s][2, J1[p, n]] : I2[p, n]\) respectively.

3. **maxNumevent**
4. **Runtime**

maxNumevent and Runtime determine how the simulation terminates. In fact simulation will stop if the number of event reaches maxNumevent or the total evolution time reaches the Runtime.

5. **N** is the number of node in the network
6. x_0 is a vector with the length N that stores the initial state of each node. For example if the node n is initially in compartment m then $x_0[n] = m$. GEMF_SIM uses x_0 as a initial condition for the network.

Output Argument The output of GEMF_SIM is a list which contains the summary of simulation. $lst=list(ts,n_{index},i_{index},j_{index},T_f,lasteventnumber)$

1. lasteventnumber
2. T_f
 - The simulation stops if any of these cases happen: (a) the number of events reaches the input argument $maxNumevent$. (b) the total evolution time reaches the input argument $Runtime$. (c) the system reaches equilibrium, in a sense that the rate of changes in the system is smaller than a specified threshold. Hence it is possible that the total number of events would be smaller than $maxNumevent$ or the time span of simulation would not become $Runtime$. In general, the output arguments $lasteventnumber$ and T_f are the total total number of events and the time duration of simulation.
3. ts is a vector with a length which is equal to the input parameter $maxNmevent$ and stores the time interval between the events\cite{paper}. For example, $ts[i]$ is the time interval between $(i−1)th$ and $(i)th$ events. Since the number of events that happen in the simulation equals the output argument $lasteventnumber$, all the elements of ts with index i greater than $lasteventnumber$ are zero. $ts[i] = 0$ if $i > lasteventnumber$. Moreover $T_f = \sum_{i=1}^{lasteventnumber} ts[i]$.
4. n_{index}
5. i_{index}
6. j_{index}
 - Considering the event based algorithm \cite{paper} adopted for the simulation, we use the the output arguments n_{index}, i_{index} and j_{index} in order to keep the record of the events. These output arguments are vectors with the length equals to $maxNmevent$. The $(i)th$ event is a transition where the node $n_{index}[i]$ changes its state from the compartment $i_{index}[i]$ to the compartment $j_{index}[i]$.\end{itemize}

Post_Population

lst2=Post_Population($x_0,M,N,ts,i_{index},j_{index},lasteventnumber$)

For one realization of the spreading process, generated by GEMF_SIM function, we can use the Post_Population function to obtain the number of the nodes, at different time instants, that have a specific state.

Input Arguments

1. ts
2. i_{index}
3. j_{index}
4. lasteventnumber
 - The parameters ts, i_{index}, j_{index} and $lasteventnumber$ are the output of GEMF_SIM function.
5. x_0 is a vector that stores the initial states of the nodes. This parameter is the same input argument used for GEMF_SIM function.
6. M is the number of node states.
7. N is the number of nodes in the network.

Output Argument The output of Post_Population function is a list that contains the numeric vector T and the StateCount matrix. $lst2=list(T,StateCount)$.

1. T stores the times in the simulation that an event happened and it is calculated using the cumulative sum of ts as $T=c(0,cumsum(ts[1:lasteventnumber]))$.
2. StateCount matrix has the dimension $M \times t$, where M is the number of node states and t is the length of the output vector T. The StateCount matrix stores the population of each compartment at the time-points specified by the elements of T. Thus, considering one realization of the spreading process using GEMF_SIM, the StateCount[i,j] is the number of nodes that were in the compartment i in the time interval $[T[j], T[j+1])$.\end{itemize}
• **Post_NodesState**

\[\text{lst3} = \text{Post_NodesState}(x0, M, N, ts, n_index, j_index, \text{lasteventnumber}, \text{timstp}, \text{Runtime})\]

For one realization of the spreading process, generated by \textit{GEMF_SIM} function, Post_NodesState function can be used to retrieve the state of each individual node at different time instants.

Input Arguments

1. \textit{ts}
2. \textit{n_index}
3. \textit{j_index}
4. \textit{lasteventnumber}
 The parameters \textit{ts}, \textit{n_index}, \textit{j_index} and \textit{lasteventnumber} are the output of \textit{GEMF_SIM} function.

5. \(x0\) is a vector that stores the initial states of the nodes. This parameter is the same input argument used for \textit{GEMF_SIM} function.

6. \(M\) is the number of node states.

7. \(N\) is the number of nodes in the network.

8. \textit{Runtime} is the same input parameter used for \textit{GEMF_SIM} function.

9. \textit{timstp} The \textit{Post_NodesState} function uses the input parameter \textit{timstp} to produce a sequence of time-points, \(Tr\), from \(t=0\) to \(t=\text{Runtime}\) with the step-size equals to \textit{timstp}. The function task is to retrieve the state of each node at the time instants specified by the elements of \(Tr\).

Output Argument The output of \textit{Post_NodesState} function is a list that contains the numeric vector \(Tr\) and the \textit{nodStt} matrix. \[\text{lst2} = \text{list}(Tr, nodStt)\]

1. \(Tr\) is a sequence of time-points, from \(t=0\) to \(t=\text{Runtime}\) with the step-size equals to the input parameter \textit{timstp}. The \textit{Post_NodesState} function retrieves the states of each node at the time instants specified by the elements of \(Tr\).

2. \textit{nodStt} is a matrix that has \(t \times N\) dimensions. Here \(t\) is the length of the output argument \(Tr\) and \(N\) is the number of nodes. \(nodStt[i, j]\) is the state of node \(j\) at the time point \(Tr[i]\). Considering the algorithm used by \textit{GEMF_SIM} function for the realization of the spreading process\cite{paper}, every time an event happens one of the nodes in the network changes its state. Assuming \(T[j]\) is the time when the \(j\)th event happens, the node states in the time interval \([T[j], T[j + 1])\) does not change\(^1\). Hence the states of nodes at \(Tr[i]\) is the same as the states of nodes in the time interval \([T[j], T[j + 1])\) as long as \(Tr[i]\) rests in the interval. If some of the time points in the sequence \(Tr\) are greater than the time, \(Tf\)\(^2\), that last event happens, the state of nodes will be assigned as the same states that they had at \(Tf\).

• **GEMF_SIM_Prob**

\[\text{lst4} = \text{GEMF_SIM_Prob}(\text{Para}, \text{Net}, X0, \text{maxNumevent}, \text{Runtime}, N, \text{numrun}, \text{timstp}, \text{comp}, \text{drawfromprobdis}, P0)\]

Using this function we can perform the Monte Carlo simulation of the stochastic spreading models over the network in order to obtain an estimation for the probability that a node occupies a specific compartment at different time instants. This function generates several realizations of the epidemic process and counts the occasions that a node occupies a compartment at a certain time point.

Input Arguments

1. \textit{Para}
2. \textit{Net}
3. \textit{X0}
4. \textit{maxNumevent}
5. \textit{Runtime}

\(^1T\) is the output argument of the \textit{Post_Population} function
\(^2Tf\) is the output of \textit{GEMF_SIM} function
6. **N**
 The parameters \(Para, Net, X0, maxNamevent, Runtime, N\) are the same input parameters defined for the \(GEMF_SIM\) function.

7. **numrun** is the number of the process’s realizations that will be generated.

8. **timstp** is a numeric value that will be used as the step-size to produce a sequence of time-points, \(Tp\), from \(t=0\) to \(t=Runtime\). The function counts the occasions that a node occupies a compartment at a certain time point specified by the elements of \(Tp\).

9. **comp** is a numeric vector with the node states as its elements. For example if we want the function to count the number of times that a node assumes node states \(i\) and \(j\), \(comp\) should be a vector with \(i\) and \(j\) as its elements, \(comp = c(i, j)\).

10. **drawfromprobdis** is a Boolean value. If we set the input parameter \(drawfromprobdis=TRUE\), the function starts each realization of the stochastic process with a different initial condition. In this case the input parameter \(X0\) will not be used.

11. **P0** is \(M \times N\) matrix of numeric values where \(M\) is the number of compartments and \(N\) is the number of the nodes. If the input \(drawfromprobdis\) is set to \(TRUE\), the function interprets the \(nth\) column of the input \(P0\) as the probability distribution of initially finding node \(n\) in different states. Hence, in order to assign the node \(n\) an initial state the function draws a state using the probability distribution defined by the \(nth\) columns of \(P0\) or \(P0[,n]\).

Output Argument The output of \(GEMF_SIM_Prob\) function is a list that contains a numeric vector, \(Tp\), and a numeric three dimensional array, \(compcu\). \(lst4\)\(=\)list(\(Tp\),\(compcu\)).

1. **Tp** is a sequence of time-points, from \(t=0\) to \(t=Runtime\) with the step-size equals to the input parameter **timstp**. The function counts the occasions that a node occupies a compartment at a certain time point specified by the elements of \(Tp\).

2. **compcu** The function generates as many realizations of the spreading process as the value of the input parameter **numrun**. The element \(compcu[i,n,j]\) stores the number of times among all the realizations that the node \(n\) occupies the compartment \(comp[i]\) at the time instant \(Tp[j]\). Hence the probability of finding node \(n\) in \(comp[i]\) at the time instant \(Tp[j]\) can be estimated by the value of \(compcu[i,n,j]/numrun\).

• **Net Import**

\(Net=Net_Import(\text{File},N)\)
Generates the \(Net\) parameter for a single layer topology. \(Net\) is the input parameter of \(GEMF_SIM\) function.

Input Arguments

1. **File** is the name of a text file that describes a single layer network. The network links can be directed and weighted. The text file should have three columns where the elements in each row are tab delimited. Each row represents a directed link from the first element in the row to the second element and the weight of the link is the third element. If a link between the nodes \(i\) and \(j\) is undirected, where the nodes on either side of the link can affect each other, two rows should be included in the text file; One row for describing a link from node \(i\) to node \(j\) and another row for a link from node \(j\) to node \(i\). Hence The corresponding rows would be:
 \[i \ j \ 1 \]
 \[j \ i \ 1 \]
 where the 1 in the third column is the weight of the link.

2. **N** is the number of nodes in the network.

Output Arguments

1. **Net** is a \(Net\) parameter with \(l=1\). The \(Net\) parameter is described as one of the input arguments for the \(GEMF_SIM\) function.
• **NetCmbn**

\[
\text{Net} = \text{NetCmbn}(\text{NetSet}, N)
\]

This function combines the *Net* arguments of single-layer networks and generates the *Net* argument for the multilayer network which can be used as the input argument for the *GEMF_SIM* function.

Input Arguments

1. *NetSet* is a list containing the *Net* parameters of single-layer networks. For example if we have two layers then \(\text{NetSet}=\text{list}(\text{Net1}, \text{Net2})\) where \(\text{Net1}\) and \(\text{Net2}\) are the *Net* parameters of two single-layer networks. Each single layer *Net* parameter can be generated using the *Net_IMPORT* function.

2. *N* is the number of nodes in the network.

Output Arguments

1. *Net* is the *Net* parameter for the multilayer network and can be used as the input argument for the *GEMF_SIM* function.

• **Para_SIS**

\[
\text{Para} = \text{Para}_\text{SIS}(\delta, \beta)
\]

The argument *Para* for a generic spreading model is described as one of the input arguments of *GEMF_SIM* function. The function *Para_SIS* generates the argument *Para* for the SIS spreading model over a single-layer network.

Input Arguments

1. \(\delta\)

2. \(\beta\)

Here \(\delta\) and \(\beta\) are the transition rates in the SIS model where each node is susceptible or infected. In this model a susceptible node becomes infected with the rate \(\beta\) if it has one infected neighbor and an infected node becomes susceptible with the rate \(\delta\).

Output Arguments

1. *Para* is the specific *Para* argument for the SIS spreading model over a single-layer network.
 \[
 \text{Para} = \text{list}(M, q, l, A_d, A_b)
 \]
 For the SIS spreading model over a single layer network we have
 - number of node states \(M=2\) (susceptible state is represented by the integer number 1 and the infected state is represented by the integer number 2)
 - number of layers \(l=1\)
 - influencer states \(q=[2]\) (because the network is single layer, \(q\) is \(1 \times 1\) matrix with the integer number 2 as the influencer state; 2 is representing the infected state)
 - nodal based transition matrix \(A_d = \begin{bmatrix} 0 & 0 \\ \delta & 0 \end{bmatrix}\) (the only nodal based transition in the SIS model is the transition from the infected state (represented by 2) to the susceptible state (represented by 1) with the rate \(\delta\)).
 - edge based transition array \(A_b\) which has \(2 \times 2 \times 1\) \((M \times M \times l)\) dimensions and \(A_b(:,:,1) = \begin{bmatrix} 0 & \beta \\ 0 & 0 \end{bmatrix}\) (the only edge based transition in the SIS model is the transition from the susceptible state (represented by 1) to the infected state (represented by 2) with the rate \(\beta\)).

• **Para_SAIS_2layer**

\[
\text{Para} = \text{Para}_\text{SAIS}_\text{2layer}(\delta, \beta, \beta_a, \kappa, \mu)
\]

The argument *Para* for a generic spreading model is described as one of the input arguments of *GEMF_SIM* function. The function *Para_SAIS_2layer* generates the argument *Para* for the SAIS spreading model over a 2-layer network.
In the SAIS_2layer epidemic model each node is either susceptible or infected or alert. If a node is infected it becomes susceptible with the rate δ. If a node is susceptible and through the first layer of the network is connected to an infected node it becomes infected with the rate β or it becomes alert with rate κ. Moreover, an alert node that has an infected neighbor in the first layer becomes infected with the rate β_a. In addition to the mentioned transitions, if a node is susceptible and has an infected neighbor in the second layer of the network, it becomes alert with the rate μ.

Output Arguments

1. `para` is the specific `para` argument for the SAIS spreading model over a 2-layer network.
 \[\text{Para} = \text{list}(M, q, l, A_d, A_b) \]
 - number of node states $M=3$ (susceptible state is represented by the integer number 1, infected state is represented by the integer number 2 and alert is represented by the integer number 3)
 - number of layers $l=2$
 - influencer states $q=[2 \ 2]$ (because the network is 2-layer, q is a 1×2 matrix with the integer number 2 as the influencer state; 2 is representing the infected state)
 - nodal based transition matrix $A_d = \begin{bmatrix} 0 & 0 & 0 \\ \delta & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ (the only nodal based transition in the SAIS_2layer model is the transition from infected state to susceptible state ($2 \rightarrow 1$) with the rate δ).
 - edge based transition array A_b which has $3 \times 3 \times 2$ ($M \times M \times l$) dimensions.
 For the rates of the transitions induced through the first layer of the network we have
 \[A_b(:,:,1) = \begin{bmatrix} 0 & \beta & \kappa \\ 0 & 0 & 0 \\ 0 & \beta_a & 0 \end{bmatrix} \]
 - from susceptible state to infected state ($1 \rightarrow 2$) with the rate β.
 - from susceptible state to alert state ($1 \rightarrow 3$) with the rate κ.
 - from alert state to the infected state ($3 \rightarrow 2$) with the rate β_a.

2. `mu` is the specific `mu` argument for the SAIS spreading model over a 2-layer network.
 \[\mu \]
 - number of node states $M=3$ (susceptible state is represented by the integer number 1, infected state is represented by the integer number 2 and alert is represented by the integer number 3)
 - number of layers $l=2$
 - influencer states $q=[2 \ 2]$ (because the network is 2-layer, q is a 1×2 matrix with the integer number 2 as the influencer state; 2 is representing the infected state)
 - nodal based transition matrix $A_d = \begin{bmatrix} 0 & 0 & 0 \\ \delta & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ (the only nodal based transition in the SAIS_2layer model is the transition from infected state to susceptible state ($2 \rightarrow 1$) with the rate δ).
 - edge based transition array A_b which has $3 \times 3 \times 2$ ($M \times M \times l$) dimensions.
 For the rates of the transitions induced through the first layer of the network we have
 \[A_b(:,:,1) = \begin{bmatrix} 0 & \beta & \kappa \\ 0 & 0 & 0 \\ 0 & \beta_a & 0 \end{bmatrix} \]
 - from susceptible state to infected state ($1 \rightarrow 2$) with the rate β.
 - from susceptible state to alert state ($1 \rightarrow 3$) with the rate κ.
 - from alert state to the infected state ($3 \rightarrow 2$) with the rate β_a.

For the rates of the transitions induced through the second layer of the network we can write
\[A_b(:,:,2) = \begin{bmatrix} 0 & 0 & \mu \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \]
- to alert state ($1 \rightarrow 3$) with the rate μ.

NetGen_Geo

Net=NetGen_Geo(N,r)

This function generates random geometric graph by distributing the nodes uniformly and independently in the unit square and connecting any two nodes by a link if and only if their distance is smaller than a certain value. The function outputs the `Net` parameter for the undirected geometric graph network.

Input Arguments

1. **N** is number of the nodes in the network.
2. **r** in the random geometric graph any pairs of nodes are connected if and only if the distance between them is smaller than r.

Output Arguments

- **Net** is the random geometric graph.
1. **Net** is the *Net* parameter for the undirected random geometric graph and it can be fed in to the *GEMF_SIM* function as an input argument.

- **NetGen_ER**

 \[
 \text{Net} = \text{NetGen}_{\text{ER}}(N,p)
 \]
 This function generates a variant Erdos-Renyi random graph where any pair of nodes in the network have a fixed probability of being connected. The function outputs the *Net* parameter for the undirected Erdos-Renyi graph.

Input Arguments

1. \(N \) is number of the nodes in the network.
2. \(p \) In the Erdos-Renyi random graph any pair of nodes in the graph are independently connected with probability \(p \).

Output Arguments

1. *Net* is the *Net* parameter for the undirected Erdos-Renyi random graph and it can be fed in to the *GEMF_SIM* function as an input argument.

Examples

- **SIS epidemic over 1-layer network**

 In this example the goal is to generate one realization of the the SIS epidemic model over a single layer network. Here we explain the code that we need to run in R:

 First we start with loading some functions that we will use in the simulation
  ```r
  source("NeighborhoodDataWD.R");
  source("NetImport.R");
  source("ParaSIS.R");
  source("PostPopulation.R");
  source("GEMF_SIM.R")
  ```
 The next step is to prepare the input arguments for the GEMF_SIM function. The characteristics of the input arguments and the functions are explained in the "Description" section of the manual.

 File="edgewd.txt";
 N=379;
 Net=NetImport(File,N);
 Para=ParaSIS(1,0.2);
 x0=matrix(2,1,N);
 maxNumevent=35000;
 Runtime=30;
 now the input arguments are defined and we can run the GEMF_SIM function
  ```r
  lst=GEMF_SIM(Para,Net,x0,maxNumevent,Runtime,N);
  ```
 using the Post_Population function we can find the population of the compartments through time
  ```r
  M=Para[1];
  lst2=PostPopulation(x0,M,N,ts,i_index,j_index,lasteventnumber);
  T=lst2[1];
  StateCount=lst2[2];
  infectedpopulation=StateCount[2];
  susceptiblepopulation=StateCount[1];
  ```
 we can plot the population of the infected nodes or the susceptible nodes respect to time

7
SAIS epidemic model over 2-layer network

In this example we simulate the SAIS epidemic over a 2-layer network and estimate the probability distribution of finding a node in different states as a function of time. For this simulation the initial states of the nodes are chosen from a probability distribution and the network is randomly generated. In order to run the simulation we execute `GEMF_SIM_Prob` function over several cores of the computer in parallel.

first we start with loading some functions that we will use in the simulation

```
source("NeighborhoodDataWD.R");
source("NetCmbn.R");
source("Para_SAIS_2layer.R");
source("GEMF_SIM_Prob.R");
source("NetGen_Geo.R");
source("NetGen_ER.R");
```

the next step is to prepare the input arguments for the GEMF_SIM_Prob function. The characteristics of the input arguments and the functions are explained in the "Description" section of the manual.

```
N=300;
Net1=NetGen_Geo(N,0.1)
Net2=NetGen_ER(N,0.03);
NetSet=list(Net1,Net2);
Net=NetCmbn(NetSet,N);
Para=Para_SAIS_2layer(1,0.2,0.1,0,0.1);
```

setting up an SAIS_2layer epidemic model

```
M=Para[[1]];
P0=matrix(0,M,N);
P0[1,]=0.25;
P0[2,]=0.5;
P0[3,]=0.25;
maxNumevent=100000;
Runtime=5;
umrun=25;
comp=c(1,2,3);
```

values that specifies when the simulation terminates

```
we can run GEMF_SIM_Prob function in parallel on several cores
```

```
library(parallel);
numcor=4;
```

here we choose 4 cores to run the simulation

```
cl=makeCluster(numcor);
```
the cluster function makes the list "result" that has the output of GEMF_SIM_Prob, from different cores, as its elements

timstp=0.1;
result=clusterCall(cl, GEMF_SIM_Prob, Para,Net,X0=NA,maxNumevent,Runtime,N,numrun,timstp,comp,
drawfromprobdis=TRUE,P0);
stopCluster(cl);
we can incorporate the simulations from different cores

Tp=result[[1]][[1]];
compcu=result[[1]][[2]];
for (j in 2:numcor) {compcu=compcu+result[[j]][[2]]};
s=numcor*numrun; total number of the realization for the epidemic process
comppr=compcu/s;
susceptible=colSums(comppr[1,])
infected=colSums(comppr[2,])
alert=colSums(comppr[3,])
we can plot the average number of the susceptible, infected or alert nodes respect to time

![Graph showing the average population of susceptible, infected, and alert nodes over time.](image-url)