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Abstract 
modula t ion  method, previously referred t o  as QPSK, is described in fur ther  detail. An 

bandwidth and bit error per formance  i s  given, along wi th  results when  the  se t  of Discrete 
Sequences are used as the  optimal pulse  shaping func t ions .  Particular a t ten t ion  i s  given 

under  channel bandlimiting, nonlinear transformations,  and fading conditions.  

K ,  Discrete Prolate Spheroidal Sequences, system bandwidth, bit error performance 
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INTRODUCTION 

of QPSK called Q2PSK [l] 
of signal dimensions from two 
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tEis system is possible which oper- 
dimensional signal space. Contributions 
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,signaling method, also referred to 
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Q"PSK system. 

sequences, the set of Discrete 
Sequences (DPSSs) are known to 
bandwidth-efficient set of index- 

possible [2]. The DPSSs form an 
the set of DPSSs appears to be an 

the pulse-shaping functions of a 
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SYSTEM OVERVIEW 

QPSK transmitter may be repre- 

= &")p(t - nTs), (1) 

represent the complex data values 
and p ( t  - nT,) represents a pulse 
For traditional QPSK the pulse 

Fig. 1. Spectral densities of DPSSs N = 64, W = .04, IC = 
0,1 ,2 ,3 .  
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shaping function p ( t )  is rectangular in shape. Non- 
rectangular pulse shapes are commonly used to im- 
prove the spectral characteristics of the output sig- 
nal. If we have available n orthogonal pulse shapes, 
a QnPSK system can be defined by using these n 
pulses in n different QPSK subsystems, with the 
output of each summed together for the final out- 
put. For a constant transmission rate it is important 
to note that the symbol period increases with n as 
given by T, = n2T. The block diagram of a QnPSK 
system transmitter is shown in Figure 2. 

improved spectral efficiency over similar lower di- 
mension systems. If the n pulses being used com- 
prise a bandwidth-efficient set of waveforms, then 
the bandwidth of the QnPSK system may decrease 

The biggest advantage of QnPSK is its potential 
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Fig. 2. Lowpass model of QnPSK system transmitter 

appreciably as n is increased if each subsystem trans- 
mission rate is equal to l /n  of the original QPSK 
system. 

111. SYSTEM POWER SPECTRA 

Our objective is to find the average lowpass power 
spectrum of z(t) indicated by Sj(f), which may be 
found using the Wiener-Khinchin Theorem. Using 
methods similar to those of Titsworth and Welch 
[4], it can be found that the resulting average power 
spectrum will be 

J-1 - 

J-1 + 

The representative power spectra of several dif- 
ferent QnPSK systems were found using the results 
above and are shown in Figure 3. All DPSS pulse 
shapes used were extended in length to a final length 
of 512 samples. 

IV. BIT-ERROR PERFORMANCE OF Q"PSK 
UNDER NON-IDEAL CONDITIONS 

Although it is clear the performance of Q"PSK 
under the presence of additive white Gaussian noise 
is the same as traditional QPSK systems, the er- 
ror performance of the system under other channel 
degradations is not so obvious. The various other 
channel degradations we are interested in include 
bandlimiting, multipath reflections, fading, and non- 
linearities. We will first derive a system model un- 
der which these degradations may be considered. 
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Fig. 3. QnPSK Power Spectral Densities 
1) QPSK using traditional square pulse shapes, 
2) QPSK using pulse shape DPSS k=O, N S 4 ,  W=.025, 
3) Q'PSK with DPSSs k=0,1, N=64, W=.025, and 
4) Q4PSK with DPSSs k=0,1,2,3, N=64, W=.04. 

The model makes use of lowpass analysis techniques 
which are commonly used in studying bandpass sys- 
tems [6]. 

The QnPSK transmitter in Figure 2 and corre- 
sponding matched filter receiver will be used as a 
guide in developing this model. Subsystems of the 
transmitter are referenced with j ,  while subsystems 
of the receiver are referenced with i. 

Three different signals may be thought of as en- 
tering the receiver and passing through the matched 
filter of each subsystem. They are a result of the 
channel model, and are represented by: 

0 The direct signal, Zd(t), with bandlimiting and 

The reflected signal,Z,(t), with the various other 

0 Channel noise, fi,(t). 

nonlinearity degradations present, 

degradations present, and 

A representation for each of these signals will be 
found in the following sections, but first the trans- 

will be derived. 
mitter output signal for a sequence of transmissions 

A .  The Transmitted Signal 

Referring to Figure 2, if the output of the j t h  sub- 
system for a single transmission is denoted by s j ( t ) ,  
then a sequence of transmissions for that subsystem 
may be represented by 

M 

q ( t )  = sj ( t -nT,) .  (3) 
n=-m 
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=Ep, 0 sent 

; $ E ~ ,  1 sent. 
( 6 )  

ed output for a signal which has 
in any way. 

Yignal 

gnal is generated by fading and 
2sired or direct signal. The model 
p a l  takes on the form 

t)eJ@@)&(t - td)e-J2xfctd (7) 

:presents a scattering model with 
le and uniform phase, and t d  is 
i. The scattering model may be 

K 
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where the bk are statistically independent zero-mean 
Gaussian random variables, the Xk are constant fre- 
quency terms, and the size of K determines the ac- 
curacy of the model [5]. 

The mean square value of the reflected signal pro- 
cessed by the ith section of the receiver at  the the 
sample time Ts can be found to be 

(8 )  
where 

the r k  are defined by a 2K + 1 point Gauss 
quadrature rule, and Pd/Pr is the ratio of desired 
signal power to reflected signal power. 

D. Channel Noise 

The other source of noise is that which comes from 
the channel. Channel noise is usually modeled as 
having an additive white Gaussian distribution, with 
equivalent lowpass power spectrum 

After passing through the ith matched filter receiver 
the resulting power spectrum of the filtered noise 
6i(t) is 

so the variance of the channel noise at the receiver 
is given by 

A2 
4 u i  = No Ep -. 

E. Finding P[e] using the lowpass model 

For each bit permutation the conditional probabil- 
ity of error should be calculated for each subsystem 
using 

P[e I Dl = Q ( y i ( T s )  /g) 1 

where u = &=. The overall system P[e] will 
be the average of these subsystem performance val- 
ues. 
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Q4PSK Performance under Bandlimiting, B,/R = 

F. Results Using DPSSs 

The results in Figure 4 show the performance of 
the Q4PSK system after bandlimiting with a four 
pole Butterworth filter. Figure 5 shows the system 
performance under nonlinear degradations with the 
operating level varied relative to  the 1 dB compres- 
sion point. Figure 6 shows the performance under 
fading condtions with q PdlP, = 20.0 dB, the re- 
flected signal time delay t d  = 1 bit time, and fading 
process bandwidth B, varied over 0.5, 1, and 2 Hz. 
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Fig. 6. Q4PSK Performance under Fading Bandwidth B, 

V. CONCLUSIONS 

An expanded form of QPSK called QnPSK is 
shown to have potentially greater bandwidth ef- 
ficiency than conventional digital communication 
systems, particularly when using Discrete Prolate 
Spheroidal Sequences (DPSSs) as pulse shaping 
functions. The performance of Q4PSK under var- 
ious system degradations was studied using lowpass 
modeling techniques, with results showing modest 
improvements over current systems for most cases 
of channel bandlimiting. 
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