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evaluate the set of sufficient conditions (1 1) for uncoupled estimation: 
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The conditions given in ( I  I )  are therefore satisfied, and we 
conclude that the estimates of azimuth and elevation angles made 
with this two-ring array are uncoupled. It follows that an array 
consisting of several ring pairs, where each pair in (12) can have 
distinct values of Z and R, also has the property that the angle 
estimates are uncoupled. Cylindrical arrays and spherical arrays are 
examples of such arrays. 
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A Simple Algorithm for Generating 
Discrete Prolate Spheroidal Sequences 

Don M. Gruenbacher and Donald R. Hummels 

Absfract- The discrete prolate spheroidal sequences are optimum 
waveforms in many communication and signal processing applications 
because they comprise the most spectral efficient set of orthogonal 
sequences possible. Generation of the sequences has proven to be difficult 
in the past due to the absence of a’closed form solution. A new method 
of easily generating any single discrete prolate spheroidal sequence, 
including sequences of very long length, is presented. Also shown are 
some example sequences generated using the algorithm presented. 

I. INTRODUCTION 
The set of discrete prolate spheroidal sequences (DPSS’s) has 

long been known to have characteristics which would make them 
ideal candidates for use in communication and signal processing 
applications. Possible applications of DPSS’s include pulse shaping, 
secure communications [I], PAM [2], and signal extrapolation [3].  
Initially, DPSS generation was difficult due to the lack of a closed 
form solution. In [4] a method was given for generating the single 
most frequency-compact sequence out of a set of DPSS’s, however, 
the method did not allow for the generation of either DPSS’s beside 
the most compact sequence or for DPSS’s of extremely long length. 
The recursive procedure in [4] does not work well for certain 
DPSS’s with a length beyond approximately 32 samples. Applications 
requiring sequences with long lengths would not be able to use 
DPSS pulses in these cases. This correspondence will give a fairly 
straightforward, simple, and reliable method for the generation of any 
DPSS of arbitrary length. DPSS‘s with length in excess of 10000 
samples have been generated with this method. First, a description 
of the DPSS’s and some of their properties will be given. 

DPSS’s are the discrete-time relatives of the prolate spheroidal 
wave functions [ 5 ]  and discrete prolate spheroidal wave functions. 
Although DPSS’s have been studied by various authors, the most 
extensive work has been done by Slepian [6]. The notation used by 
Slepian in denoting a single DPSS is P ( ~ ) ( - \ - .  UT), where S indicates 
both the number of DPSS’s in the set and the number of samples in 
each DPSS, and 11- is a bandwidth and shaping factor under the 
constraint 0 < 11- < .5. The value of k indicates the particular DPSS 
out of the set k = 0.1 . .  . . . S - 1. 

The most well known property of the orthogonal DPSS’s is that 
a set of DPSS’s comprise the index limited sequences with greatest 
amount of energy contained within a frequency band. It is also known 
that DPSS (‘(o)(A\-.ll-) has the most compact spectrum out of the 
set, while each succeeding DPSS, k = 1.. . . ._ Y - 1, has a larger 
bandwidth than the DPSS preceding it [6]. 

11. DPSS GENERATION 
In 161 Slepian presented properties of DPSS’s which can be used 

to develop different techniques for generating any particular set of 
DPSS’s. The two primary techniques find the DPSS’s as eigenvectors 
of one or the other of two matrices. Matrix H ( ; Y ,  IT-) is Hermitian, 
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and its elements are defined by 

? T I .  7) = 0.1. ‘ ‘ ’ . s - 1. ( 1 )  

The symmetnc tndiagonal matrix T (  S. T i - ) ,  is defined by 
- / ) .  j = / - l  

(0. 
where 

1 .  j = 0.1. .  . . .A\T - 1. 

I j  - i )  > I 

Matrix T (  S. i t7)  is a normal symmetric Jacobian matrix. It can be 
shown that T ( S .  I-1-) commutes with H(iI-. ti-), i.e. 

H ( ~ ~ ~ , I i ~ ) ~ ( - I - . I i , . )  = T(S.I17)H(S.IT-) (3) 
so all the eigenvectors of T (  S, It7)  are also the eigenvectors of 
H(1V. IY) [7]. 

In previous work [SJ the QR algorithm was used to find the 
eigenvectors (DPSS’s) of both T (  LT. It7) and H (A-, 14.). As expected, 
the same results were obtained from each matrix for small 
However, for > 32, H (N. W) becomes ill-conditioned and its 
computed eigenvectors are no longer the true DPSS’s. Thus, only 
matrix T ( N ,  W) will provide reliable DPSS generation for large .Y. 
The only disadvantage of using T (  N’) is that its eigenvalues 
do not indicate true bandwidth concentrations of the DPSS’s as 
do the eigenvalues of H(AV,lj7). The remainder of this paper 
will concentrate on DPSS generation from the tridiagonal matrix 
T ( X ,  IY). 

Using the QR algorithm or a variation of it generally requires the 
entire set of eigenvectors to be found. In various possible applications 
of DPSS’s, only a select number of DPSS’s will be desired. In these 
cases, it would be beneficial to have a different algorithm which finds 
only a single DPSS. The following describes a procedure for finding a 
single DPSS (eigenvector) associated with the kth largest eigenvalue 
of normal symmetric Jacobian matrices such as T (  iV. W) .  In general, 
the algorithm first finds the desired eigenvalue, and the corresponding 
eigenvector is found using iterative techniques. 

Because T (  AV. W )  is originally in  symmetric tridiagonal form, 
the well known method of bisection may be used to find a single 
eigenvalue with potentially smaller relative error than if multiple 
eigenvalues were found using QR or QL iterations (p. 439 of [9]). 
Let the elements of T be denoted by 

h,-1 

l o  
The characteristic polynomial of the leading r x T principal submatrix, 
T,, of T is known to be 

(4) 
If we set po ( x )  = 1 and p l  (s) = Q 1 - s, then a simple determinantal 
expansion (p. 437 of [9]) reveals the recursive relationship 

p p ( r )  = ( a ,  - r ) p T - 1 ( . r )  - b:-lpr--2(.r)r = 2. .  . . .n. ( 5 )  
The roots of pn ( x )  are the eigenvalues of T ,  and bisection may 

now be used to find any or all of the roots. However, finding a 
specified eigenvalue, say the kth largest, also requires the use of 
a theorem called the Sturm sequence property (p. 438 of [9]). The 
portion of the theorem to be used here states that the number of sign 

p r ( r )  = det (Tr - r1) r = 1.2. .  . . . I ? .  

Fig. 1. DPSS d O ) ( N  = 128,W = . lo).  
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Fig. 2. 

changes n(A) in the sequence 

DPSS d3)(IV = 128,W = .lo). 

(PO(A),Pl(A),. . . ,Pn(A)) 
equals the number of eigenvalues that are less than A. 

TOL using the following algorithm: 
while ]A,,, - A,,,I > TOL 

Now the kth largest eigenvalue may be found with an accuracy of 

A k  = (Amax - Am,n)/2 
if a ( A k )  2 k 

Amax A k  

else 

end 
Amin = A k  

end. 
Of course, initially the interval [A,,,, A,,,] must contain the 

desired eigenvalue. The interval in which all eigenvalues were 
contained for a matrix T of size N was found using the Gershgorin 
circle theorem (p. 341 of [9] to be A E [-y,y], where 

+ 0.25. ( N  - 1) * ( N  + 2) + N * ( N  + 1) 
8 Y =  

Because the notation used by Slepian associates the most compact 
DPSS and largest eigenvalue with the index value k = 0 instead 
of k = N - 1, this reverse ordering must be accounted for when 
searching for a specific eigenvalue. 

Once the desired eigenvalue is found, the corresponding eigen- 
vector or DPSS may be found using the method of inverse iteration 
[lo]. Inverse iteration works fine for finding the eigenvector which 
corresponds to the known eigenvalue except when the eigenvalue 
is close in value to another eigenvalue, i.e., the eigenvalues are 
clustered. The procedure for inverse iteration is shown below for 
finding the eigenvector associated with eigenvalue Ak. 

let t i 1  be a unit vector 
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Fig. 4. DPSS t 3 ( 1 2 7 ) ( S  = 128,i.I. = . l o )  

for i = 1 ,2 ,  . . . 
Solve ( T  - X k 1 ) 1 1 2  = 1’1 for 1 - 2  

Normalize I ’ ~  to get a new 11,  

end. 
The desired DPSS is the last normalized solution, P I .  Even though 

(T-XkI)  is nearly singular for eigenvalues Xk-of very good accuracy, 
inverse iteration is known to work well in these cases, many times 
requiring only one or two iterations [IO].  The norm of the residue 
T = ( T  - X k 1 ) v l  may be used to determine the accuracy of the 
final result. When the known eigenvalue Xk was accurate to within 
TOL = l e  - 6 using the bisection method explained previously, 
it was found that three iterations of the above procedure produced 
accurate DPSS’s. Because matrix T (  11.) is tridiagonal, solving 
the system equations during each iteration for the latest eigenvector 
estimate was also simplified (p. 155 of [9]) .  

111. SOME EXAMPLES 

Figs. 1-5 show some examples of DPSS’s generated using the 
technique described above. 

IV. CONCLUSION 
A method for accurate and computationally efficient generation 

of any single DPSS of large length was presented. The method is 
easy to implement and should prove useful in situations where only 
a few DPSS’s out of a large set are desired. The availability of long 
length DPSS’s will open the oportunity for their use in applications 
requiring sequences of long length. 
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Fig. 5. DPSS d ’ ) ( N  = 1000O.W = . l o ) .  
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Noniterative and Fast Iterative Methods 
for Interpolation and Extrapolation 

Paulo Jorge S. G. Ferreira 

Abstract-In this correspondence we study the band-limited interpola- 
tion and extrapolation problems for finite-dimensional signals. We show 
that these problems can be easily reduced to the solution of a set of 
linear equations with a real symmetric positive-definite matrix S with 
spectral radius p ( S )  < 1. Thus, the equations can be solved directly or 
using successive approximation methods. A number of other well known 
methods which may substantially increase the convergence rate may also 
be readily applied and are briefly discussed. We state conditions for their 
convergence, and illustrate their performance through an example. 
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