
GEMF: GENERALIZED EPIDEMIC MODELING FRAMEWORK
SOFTWARE IN C

FUTING FAN

Network Science and Engineering Group (NetSE)
Department of Electrical and Computer Engineering

Kansas State University
Manhattan, KS 66502, USA

1. Examples in C

In order to the determine nodal and edge-based transitions rates, we use node transition graph. We used
NetworkX in our examples because of due to its ubiquitous use, although a user can consider other modules
with minor alterations in the codes. For individual-based epidemic models, transition graphs represent only
the transition mechanism for each node in the network and not for the entire population.

When defining an epidemic model, compartments should be defined first; For example, the SIS model has
only two compartments: susceptible and infected.

Second, transitions between compartments, transition rates and their types should be defined. The inducer
compartment and layers that define neighbor nodes must also be specified.

The following sections present examples of epidemic models that we simulated with Gemf.
For Windows users, we provided execution files for both 32-bit and 64-bit. If you choose to compile on

your own machine with an IDE like Visual Studio.
For Visual Studio, remember to choose ’Win32 console application’ and ’empty project’ for your project.

After include all header files and C files into the project, you should be able to build a solution.
For other IDEs, you need to specify a designed preprocessor macro to trigger the conditional compilation

compatible with Windows. You can choose either one from ’WIN32’, ’WIN X64’ and ’ CONSOLE’.
For Linux/Unix users, a working Makefile has been provided together with source files. A ’make’ command

will generate the working execution file for you machine.
The command for running the program is shown below, if none argument is specified, a default [para.txt]

will be assigned.1.

1 ./GEMF para_file.txt

There are 3 input and output files specified inside the configuration file. To make things clear, all 3 of them
should in the right form as they are located via relative path, depending on the present working directory
while you execute the program.

1.1. Sample. One sample of parameter file.

1 [DATA_FILE]

2 network.txt

3

4 [STATUS_FILE]

5 status_SIS.txt

6

7 [OUT_FILE]

8 output.txt

9

10 [STATUS_BEGIN]

1The latest version of Gemf can be found here.
1

http://ece.k-state.edu/netse/software/index.html

GemfC NETSE Group

11 1

12

13 [DIRECTED]

14 0

15

16 [STATUS_BEGIN]

17 1

18

19 [MAX_TIME]

20 80.000

21

22 [MAX_EVENTS]

23 10000

24

25 [RUN_TIMES]

26 1

27

28 [SAMPLE_SIZE]

29 1000

30

31 [SIM_ROUNDS]

32 1

33

34 [INTERVAL_NUM]

35 1000

36

37 [NODAL_TRAN_MATRIX]

38 0 0 0

39 0 0 1

40 0 0 0

41

42 [EDGED_TRAN_MATRIX]

43 0 1.2 0

44 0 0 0

45 0 0 0

46

47 [INDUCER_LIST]

48 2

49

50 [NETWORK_INFO]

51 #This section is optional

52 #weight sign: 0 for unweighted , 1 for weighted

53 0

54 #min max node number

55 1 1024

56 #edge number for each layer , one number per line

57 10086

58

59 [SHOW_INDUCER]

60 1

2

NETSE Group GemfC

1.2. Explanation. Explanation for all sections in parameter file. Over all, all section are started with a
section name surrounded by ’[]’. Comment is allowed, with ’#’ at the beginning of the line. Each file name
must occupy one line exclusively, space in the directory is allowed. Order of the sections is trivial.

1.2.1. Network File. A network file is a file of adjacence list, weighted or unweighted. Each line contains 2
integer for a pair of nodes, or 3 integer for a pair of nodes and a number for weight.

Comment is allowed only on top of the file, with a ’#’ at the beginning of the line. No comment allowd
among data list.

1.2.2. Status File. There are three modes to config a status file.
In mode 1, status of all nodes are specified specificly while for the other modes one compartment can be

dynamic.
In mode 2, the population of each compartment is specified. Program will pick node randomly to meet

the requirment. Only one compartment can be configured as -1, meaning this one is dynamic, taking all the
rest population.

In mode 3, status of some nodes are specified while all the rest all in the same compartment.

1 //MODE 1. full list mode

2 /*

3 *e.g. for 3 compartments , 10nodes

4 *{

5 0

6 1

7 1

8 2

9 1

10 1

11 1

12 0

13 1

14 2

15 *}

16 *

17 */

18 //MODE 2. statistic mode

19 /*

20 *e.g. for 3 compartments , 10nodes

21 *

22 *{

23 6 2 2

24 or

25 -1 2 2

26 *}

27 */

28 //MODE 3. compensate list mode

29 /*

30 *e.g. for 3 compartments , 10nodes , node 1,2,9 is in compartment 1, node

4,8 is incompartment 2, all rest in the other compartmetn

31 *{

32 0

33 1 1

34 2 1

3

GemfC NETSE Group

35 9 1

36 4 2

37 8 2

38 *}

39 */

1.2.3. DATA FILE. L lines(L is the number of network layers for this simulation). Each line is consisted
of a file name, indicating the adjacency list for the corresponding layer. If there are three columns, then the
third one should be weight. Otherwise there should be two columns only.

1.2.4. STATUS FILE. One line, consisted of a file name for status input, no sapce. The file has N lines of
integer indicating the initial status of all N nodes. All value must be within the range of all compartments.

1.2.5. OUT FILE. One line, consisted of a file name for output data.

1.2.6. STATUS BEGIN. An integer indicating the mininum serial number representing all compartments.
Shoud be 1 for data prepared for most script language or 0 for data prepared for most compile language.

1.2.7. DIRECTED. 0 for undirected network and 1 for directed network

1.2.8. MAX TIME. A float number treated as stop condition. Simulation will stop after exceed this time.
Value is based on time calculated in simulation, not actual cpu time.

1.2.9. MAX EVENTS. A integer treated as stop condition, maximum number of events. This works together
with MAX TIME, simulation will stop if reach eigher limit.

1.2.10. RUN TIMES. A positive integer to control how many times of simulation are to expect. If it’s
greater than 1, the section of SAMPLE SIZE will be efective.

1.2.11. SAMPLE SIZE. A positive integer. If the value of run times is greater than 1, the the result will be
calculated based on this value S. Pick S time points uniformly from the whole time period. Calculate the
average population of each compartment among all times of simulations at there sample time points.

1.2.12. SIM ROUNDS. Run only 1 time if valued 1 or below, otherwise run several times and calculate
results into M even intervals. M is specified in the next section.

1.2.13. INTERVAL NUM. Number of intervals for sampling if run more than once.

1.2.14. NODAL TRAN MATRIX. Transition rate matrix for nodal transition. Should be a M*M matrix.(M
is the number of compartments)

1.2.15. EDGED TRAN MATRIX. Transition rate matrixes for edge based transition. Should be L M*M
matrixes.(M is the number of compartments, L is the number of layers)

1.2.16. INDUCER LIST. Inducer list for all layers. Should be a list of integers seperated by space. All the
value should be in the range of the values of compartments. The length of this list shoud be L.(L is the
number of layers)

1.2.17. NETWORK INFO. This section is optional. If not specified or imcomplete, program will automaticly
collect infomation from network file. However, this might take some time if network is large.

1.2.18. SHOW INDUCER. If this section is present with nonzero value and the simulation is run only once,
then show the inducer nodes took effect for each event in the output file. Inducer nodes in each layer are
contained in ’[]’, with the first one representing nodal transition. So there should be 1 more pair of brackets
than the number of layers.
4

NETSE Group GemfC

S I

I, β, N

δ

Contact Network N

Figure 1. Schematic of the network-based SIS model

1.3. SIS. As mentioned, each node in an SIS model can be susceptible or infected; therefore, the number
of compartments was denoted by M = 2. A susceptible node can become infected if it is surrounded by
infected nodes. Infection process of a node with one infected neighbor is a Poisson process with transition
rate β. The infection processes are stochastically independent of each other; therefore, for a susceptible node
with more than one infected node in its neighborhood, the transition rate is the infection rate β times the
number of infected neighbor nodes. The neighborhood of each node is determined by a contact network N .
In addition to the infection process, a recovery process also exists. An infected node becomes susceptible
again with a curing rate δ. The main characteristics and a node transition graph for the SIS model are
shown in Table 1 and Figure 1.

Table 1. Descriptions of the SIS model

SIS
State Transition Type Parameter Inducer Layer

S (S → E) edge-based β Neighbors in I 1
I (I → S) node-based δ

Suppose beta = 0.2; delta = 1, parameters in Table 1 can be entered by the following lines:

1 [NODAL_TRAN_MATRIX]

2 0 0

3 1 0

4 [EDGED_TRAN_MATRIX]

5 0 0.2

6 0 0

7 [STATUS_BEGIN]

8 1

9 [INDUCER_LIST]

10 2

5

GemfC NETSE Group

1.3.1. Simulation. Status file is consisted of N integers indicating the initial status of all N nodes. Both the
node serial and status serial must be successive. The mininum serial number of all statuss must be specified
in [STATUS BEGIN] section. After defining Para for SIS model, we simulated an SIS model with β = 0.2
and δ = 1, as shown in Figure 2. To run this simulation several other sections need to be configurated.

Define the duration of simulation:

1 [MAX_TIME]

2 30.000

Define input and output file name:

1 [DATA_FILE]

2 network.txt

3

4 [STATUS_FILE]

5 status.txt

6

7 [OUT_FILE]

8 output.txt

For each layer, there are specific entry in [DATA FILE], [EDGED TRAN MATRIX],[INDUCER LST]
three sections, Which are a file name for network, a M by M matrix indicating transition relation, and a
integer indicating inducer serial for this layer.

The input file file should be consisted with three columns, indicating i, j, w which means there is a link
weighted w pointing from i to j. Below is an example network consisted of 3 nodes and 4 directed links all
weighted 1.

1 1 2 1

2 1 3 1

3 2 3 1

4 3 1 1

The output file is consisted of 4+M colunms, in which M means number of compartments.
Each line represents an event. The first colunm is a float number indicating time of this event, second
column is the serial of the node that changes status, third and fourth line are status before and after
changing respectively. The rest M columns are the populations for every compartment.
For a network of 379 nodes, with 4 susceptible and 374 infected as well as other parameters specified above,
simulation result is shown in Figure 2

1.4. SIR. In the Susceptible-Infected-Recovered (SIR) model, each node can be either susceptible, infected,
or recovered (immune). Therefore, the number of compartments, denoted by M ,in the SIR model, was
M = 3. A susceptible node can become infected if it is surrounded by infected nodes. The infection process
of a node with one infected neighbor is a Poisson process with transition rate β. Similar to SIS, infection
processes are stochastically independent of each other. In addition to the infection process, a recovery process
also exists. An infected node recovers and becomes immune with a recovery rate δ. The main characteristics
and a node transition graph for the SIR model are shown in Table 2 and Figure 3.

Table 2. Descriptors of the SIR model

SIR multilayer
State Transition Type Parameter Inducer Layer

S (S → E) edge-based β Neighbors in I 1
I (I → R) node-based δ
R

Parameters in Table 2 (beta = 1.2; delta = 1) can be entered by the following lines:
6

NETSE Group GemfC

Figure 2. Simulation of the SIS model

1 [NODAL_TRAN_MATRIX]

2 0 0 0

3 0 0 1

4 0 0 0

5

6 [EDGED_TRAN_MATRIX]

7 0 1.2 0

8 0 0 0

9 0 0 0

10 [INDUCER_LST]

11 2

1.4.1. Simulation. After defining Para for SIR model, we simulated an SIR model with β = 1.2, δ = 1, as
shown in Figure 3 for a Barabasi-Albert network with 500 nodes. Method is similar to SIS simulation in
Section 1.3.1.

1.4.2. SEIR. In the Susceptible-Exposed-Infected-Recovered (SEIR) model, each node can be susceptible,
exposed, infected, or recovered (immune). Therefore, M = 4. A susceptible node can become exposed, if
it is surrounded by infected nodes. The infection process of a node with one infected neighbor is a Poisson
process with transition rate β. The neighborhood of each node is determined by a contact network N . An
exposed node is not yet infectious, but it will transition to the infected state with rate λ. Finally, an infected
node recovers with a recovery rate δ. The main characteristics and a node transition graph for the SEIR
model are shown in Table 3 and Figure 5.

Parameters in Table 3 (beta = 1.5; delta = 1; Lambda = .5) can be entered by the following lines:

1 [NODAL_TRAN_MATRIX]

2 0 0 0 0

7

GemfC NETSE Group

S I R

I, β, N δ

Contact Network N

Figure 3. Node transition graph for the SIR model for nodes in N

Figure 4. Simulation of the SIR model

8

NETSE Group GemfC

Table 3. Descriptors of the SEIR

SEIR multilayer
State Transition Type Parameter Inducer Layer

S (S → E) edge-based β Neighbors in I 1
E (E → I) node-based λ
I (I → R) node-based δ

3 0 0 0.5 0

4 0 0 0 1

5 0 0 0 0

6

7 [EDGED_TRAN_MATRIX]

8 0 1.5 0 0

9 0 0 0 0

10 0 0 0 0

11 0 0 0 0

12

13 [INDUCER_LST]

14 3

S E I R

I, β, N λ δ

Contact Network N

Figure 5. Node transition graph for the SEIR model for nodes in N

1.4.3. Simulation. After defining Para for SEIR model, we simulated an SEIR model with β = 1.5, δ = 1
and λ = .5, as shown in Figure 6.

1.5. SAIS. The Susceptible-Alert-Infected-Susceptible (SAIS) model was developed to incorporate individ-
ual reactions to the spread of a virus. In the SAIS model, each node (individual) can be susceptible, infected,

9

GemfC NETSE Group

Figure 6. Simulation of the SEIR model

or susceptible-alert. Therefore, the number of compartments in the SAIS model was M = 3. The recovery
process is similar to recovery process in the SIS model, characterized by the recovery rate δ. The infection
process of a susceptible agent is also similar to the infection process of the SIS model, determined by infection
rate β and contact network N . However, in the SAIS model, a susceptible node can become alert if it senses
infected agents in its neighborhood. The alerting transition rate is κ times the number of infected agents.
An alert node can also become infected by a process similar to the infection process of a susceptible node.
However, the infection rate for alert nodes is lower than susceptible nodes due to the adoption of preventive
behaviors. The alert infection rate is denoted by βa with 0 < βa < β. The main characteristics and a
schematic for the SAIS model are shown in the following Table 4 and Figure 7.

Table 4. Descriptors of the SAIS single layer model.

SAIS single Layer
State Transition Type Parameter Inducer Layer

S
(S → I) edge-based β Neighbors in I 1
(S → A) edge-based κ Neighbors in I 1

I (I → S) node-based δ
A (A→ I) edge-based βa Neighbors in I 1

Parameters in Table 4 (delta= 1, beta= 2, beta a= 0.4, kappa= 0.2)can be entered by the following lines:

1 [NODAL_TRAN_MATRIX]

2 0 0 0

3 0 0 0

4 1 0 0

5

6 [EDGED_TRAN_MATRIX]

10

NETSE Group GemfC

7 0 0.4 2

8 0 0 0.2

9 0 0 0

10

11 [INDUCER_LST]

12 3

A

S I

I, βa, NI, κ, N

I, β, N

δ1

Contact Network N

Figure 7. Node transition graph for the SAIS one layer model for nodes in N

1.5.1. Simulation. After defining Para for SAIS model, we simulated an SAIS model in one-layer (N), with
β = 5

λ1(G1) , δ = 1 and βa = 0.5
λ1(G1) , and κ = 0.2β, as shown in Figure 8.

1.5.2. SAIS Multilayer. The SAIS model on a two layer network was developed to incorporate multiple
sources of information to react to the spread of the virus. In the SAIS spreading model, each node (individual)
can be either susceptible, infected, or susceptible-alert. Again, the number of compartments in the SAIS
model was M = 3. The infection process of a susceptible agent was also similar to the infection process
of the SIS model, determined by infection rate β and contact network NA. However, in this version of the
SAIS model, a susceptible node can become alert if it senses infected agents in its contact neighborhood or
if it is notified about infected neighbors in an information network NB . The alerting transition rate is κ
times the number of infected agents in the contact network and µ times the number of infected agents in the
notification network. An alert node can also become infected by a process similar to the infection process

11

GemfC NETSE Group

Figure 8. Simulation of the SAIS single layer model.

of a susceptible node. However, the infection rate for alert nodes βa is lower than β due to the adoption of
preventive behaviors such as using masks. The main characteristics and a schematic for the SAIS-2 layer
model are shown in Table 5 and Figure 10.

Table 5. Descriptors of the SAIS two-layer model

SAIS multilayer
State Transition Type Parameter Inducer Layer

S
(S → I) edge-based β Neighbors in I 1
(S → A) edge-based κ Neighbors in I 1
(S → A) edge-based µ Neighbors in I 2

I (I → S) node-based δ
A (A→ I) edge-based βa Neighbors in I 1

Parameters in Table 5 (delta= 1, beta= 2, beta a= 0.2, kappa= 0.4)can be entered by the following lines:

1 [DATA_FILE]

2 edgewd.txt

3 edgewd2.txt

4

5 [NODAL_TRAN_MATRIX]

6 0 0 0

7 0 0 0

8 1 0 0

9

10 [EDGED_TRAN_MATRIX]

11 0 0.4 2

12

NETSE Group GemfC

12 0 0 0.2

13 0 0 0

14

15 0 1 0

16 0 0 0

17 0 0 0

18 [INDUCER_LST]

19 3 3

A

S I

I, βa, NAI, µ, NB

I, κ, NA

I, β, NA

δ1

Contact Network NB

Contact Network NA

Figure 9

Figure 10. Node transition graph for the SAIS two-layer model on network
with layers NA and NB.

1.5.3. Simulation. After defining Para for SAIS model, we simulated the process with β = 5
λ1(G1) , δ = 1

and βa = 0.5
λ1(G1) , κ = 0.2β, and µ = 0.5β, as shown in Figure 11.

1.6. Multiple interacting pathogen spreading SI1SI2S. Assigning only one influencer compartment to
one network layer allows different elegant analysis. However, a more general possibility is that an edge-based
transition m → n occurs if a neighbor j, is in a subset of the compartments, such as ql,1 or ql,2. This case
can be treated within the same structure, allowing the network layer to be counted twice. For example, we
assumed that in the first layer the model had the influencer compartment ql,1, and in the second layer, the
graph has the influencer compartment ql,2.

The SI1SI2S model is an extension of continuous-time SIS spreading of a single virus on a simple graph,
to the modeling of competitive viruses on a two-layer network. In this model, each node is either susceptible,
1-infected, or 2-infected (i.e., infected by Virus 1 or 2, respectively). Virus 1 spreads through network N1,

13

GemfC NETSE Group

Figure 11. Simulation of the SAIS in 2 layer

virus 2 spreads through network N2. In this competitive scenario, the two viruses are exclusive: a node
cannot be infected by Virus 1 and Virus 2 simultaneously. Consistent with SIS propagation on a single layer,
the infection and recovery processes for Virus 1 and 2 have similar characteristics. The curing process for
1-infected Node i is a Poisson process with recovery rate δ1 > 0. The infection process for susceptible Node
i effectively occurs at rate βiYi (t), where Yi (t) is the number of 1-infected neighbors of node i at time t in
layer N1. Recovery and infection processes for Vvirus 2 are similarly described. The main characteristics
and a node transition graph for the SI1SI2S model are shown in Table 6 and Figure 12.

Table 6. Descriptions of the SI1SI2S model. S: suscpetible, I1: infected by
virus 1, I2: infected by virus 2,

SI1SI2S
State Transition Type Parameter Inducer Layer

S
(S → I1) edge-based β1 Neighbors in I2 1
(S → I2) edge-based β2 Neighbors in I2 2

I1 (I1 → S) node-based δ1
I1 (I2 → S) node-based δ2

Parameters in Table 6 (delta1= 1, beta1= 2, delta2= 1, beta2= 1.5) can be entered by the following lines
in two different networks N1 (G) and N2 (H):

1 [DATA_FILE]

2 edgewd.txt

3 edgewd2.txt

4

5 [NODAL_TRAN_MATRIX]

6 0 0 0

14

NETSE Group GemfC

7 1 0 0

8 1 0 0

9

10 [EDGED_TRAN_MATRIX]

11 0 2 0

12 0 0 0

13 0 0 0

14

15 0 0 1.5

16 0 0 0

17 0 0 0

18 [INDUCER_LST]

19 2 3

S

I1 I2

I, β2, NI, β1, N

δ2 δ1

Contact Network N1

Contact Network N2

Figure 12. Node transition graph for the SI1SI2S in two layer model

1.6.1. Simulation. After defining Para for this model, we simulate an S1SI2S model in one layer with
β1 = 5

λ1(G1) , β2 = 5
λ1(H1)

, δ1 = 1 and δ2 = 1 in Figure 13.

2. Another simulate method

There is another way to run this simulation, which is run T times with the same input data and average
the result.
To make this happen, two parameter are envolved.

15

GemfC NETSE Group

Figure 13. Simulation of the SI1SI2S model

1 [RUN_TIMES]

2 10

3

4 [SAMPLE_SIZE]

5 1000

If the [RUN TIMES] value T is greater than 1, then the program will run T times with the same input,
and pick S samplesuniformly, which is specified in [SAMPLE SIZE] section. The output result will be
the everaged population for each compartment at these S sample time. Respectively, there will be only
1+M columns in the output file. The first column is time, and rest M columns are for population of M
compartments. The result is shown in Figure 14.

2.0.1. Transition rates. We used Para function to enter the required data for transition rates, as described
in Section ??. A nodal transition rate matrix is an M ×M matrix in which entry mn represents the rate of
nodal transition m→ n:

(1) Aδ , [δmn]M×M .

An edge-based transition rate matrix, corresponding to the network layer l, is an M ×M matrix in which
entry mn represents the rate βl,mn > 0 of edge-based transition m→ n:

(2) Aβ ,
[
[β1,mn]M×M , · · · , [βL,mn]M×M

]
1×L

Examples of how to use this functions are presented in Section 1.

2.0.2. Initial condition. With “InitialCondGen” function the initial status of each individual in the pop-
ulation can be determined and various approaches can be used to do this.

• User input: Initial condition is directly chosen by the user.
• Fixed initial infected population: NJ individuals randomly chosen to be in compartment J .

16

NETSE Group GemfC

Figure 14. Run the simulation of the SIS model 10 times

2.1. Simulations. Gemf uses an event-driven approach to simulate the stochastic process. This method
is advantageous compared to the discretized method. For example, in discretization approach, no transition
may occur in several time increments dt or several transition may occur in one time increment; therefore,
computation time for the event-based method is not unnecessarily longer and on the other side the solution
is more accurate and captures more events compared to the discretized method (See [?], [?]).

Number of neighbors in influencer compartment Nq. As discussed in Section ??, one of the key factors in
edge-based transitions is the number of neighbors in influencer compartment, Nq. Nq is an L × N array,
representing the number of influencer compartment for each node in each layer, weighted by edge weights.
Because node status changes in each event, Nq is updated after each event. From Section 2.0.2, initial

status of all nodes X0
M×N is obtained. For example, if X [:, 4]

T
=
[
0 1 · · · 0

]
1×M , then node 4 is in

compartment 2.
To compute Nq, Gemf goes over all nodes in each layer. Using network data from NetComb, all neighbors

of node n in layer l can be derived via

(3) Nln = Neigh [l] [I1 [l, n] : I2 [l, n]]

with weights:

(4) Wln = NeighWeight [l] [I1 [l, n] : I2 [l, n]] .

Using (4), entries of Nq (influencer neighbors) can be determined by

(5) Nq [l, n] =

|Nln|∑
i=1

X [q [l] , Nln [i]] ·Wln [i]

where |Nln| is the cardinality of set Nln.
17

GemfC NETSE Group

2.1.1. Rate of changes. From Section 2.0.1, we entered Aβ and Aδ through Para. The simulation code
initially generated bil, which is an arrays:

bil ,

∑M
i=1 β1,1i

...∑M
i=1 β1,Mi

M×1

· · ·

∑M
i=1 βL,1i

...∑M
i=1 βL,Mi

M×1

1×L

(6)

where bil represents the sum of edge-based transition rates of each compartment in each layer.
The array of edge-based transition rates matrix for each compartment in all layers bi was

bi ,

β1,11 · · · βL,11
β1,12 · · · βL,12

...
. . .

...
β1,1M · · · βL,1M

M×L

· · ·

β1,21 · · · βL,21
β1,22 · · · βL,22

...
. . .

...
β1,2M · · · βL,2M

M×L

1×M

(7)

For each compartment, the total leaving rate due to nodal transition was derived from 1 (by summing up
each row of matrix Aδ):

(8) di =

∑M
i=1 δ1i

...∑M
i=1 δMi

M×1

.

2.1.2. Total Rates. Using di and bil, total transition rates for each node were generated as

Rin = (di11×N)M×N ◦X + (bilNq)M×N ◦X(9)

where ◦ represents element-wise multiplication.
In order to find the total rate of change for the entire system, we re-added the rates. For example, for the

total rate of change for each compartment in the entire network, we introduce Ri:

(10) Ri =

∑N
i=1Rin [1, i]

...∑N
i=1Rin [M, i]

M×1

and for the total rate of change for the entire system, we introduced R:

(11) R =

M∑
i=1

Ri [i] .

2.1.3. Updating system status after an event. The initial state for all nodes was generated according to
Section 2.0.2. Because all random processes are Poisson processes, the assumption was made that the next
event would occur in time δt:

(12) δt =
− ln(rand)

R

where 0 ≤ rand ≤ 1 is a generated random number. During this event one of the nodes changes its status.
We determined which compartment changed by drawing a sample among M compartments with probability
distribution Ri; this compartment was called is.

Once the leaving compartment was identified, we wanted to know which node experienced the transition.
Therefore, we drew a sample from N nodes with probability distribution Rin [is, :] (i.e., is row of matrix
Rin) and called this Node ns.

To find the new status (compartment) of Node ns, again Gemf randomly draws the new compartment
js among M compartments with the following probability distribution:

(13) pTjs = Aδ [is, :]
T

+ bi [is]Nq [:, ns] .

Drawing samples with given probability distribution is done with RndDraw function.

18

NETSE Group GemfC

With δt, is, js, and ns, Gemf had all necessary information to update the network status and apply
required changes with the occurred event. However, Gemf had to update X matrix and the future rate of
transitions.

Because Node ns changed its status from is to js, we have:

(14) X [is, ns] = 0, X [js, ns] = 1.

To update Ri, we subtracted the column in Rin that corresponded to Node ns (i.e., Rin [:, ns]) and then we
updated

(15) Rin [:, ns] = di ◦X [:, ns] + (biNq [:, ns]) ◦X [:, ns] .

Now we add Rin [:, ns] to Ri. Next if any of the old or new compartment are in influencer category in any
layer, code should update Nq matrix. First, we find neighbors of node ns:

Nln = Neigh [l] [I1 [l] [ns] : I2 [l] [ns]](16)

WeightedNeigh = NeighW [l] [I1 [l] [ns] : I2 [l] [ns]](17)

(18)

Then we conducted the following steps for all these neighbors:

• If the old compartment is was an influencer compartment in layer l, we do the following removed
ns as their infected neighbors and recorded the weight of the edge. We also updated Rin. For n,
the k’th neighbor of ns was

Nq [l] [n]− = NNeighW [l] [NI1 [l] [ns] + k](19)

Rin [:, n]− = NNeighW [l] [NI1 [l] [ns] + k] (bil [:, n] ◦X [:, n])(20)

where − = indicates subtracting to current value.
• If the new compartment js was an influencer compartment in layer l, we added ns as their infected

neighbors and recorded the weight of the edge. We also updated Rin. For n, the kth neighbor of
ns was

Nq [l] [n] + = NNeighW [l] [NI1 [l] [ns] + k](21)

Rin [:, n] + = NNeighW [l] [NI1 [l] [ns] + k] (bil [:, n] ◦X [:, n])(22)

where + = indicates adding to current value.

We stacked ns, js, and is into nindex, jindex, and iindex, respectively, and then we recalculated Ri and R
and prepared for the next event.

1 Network Science and Engineering Group, Department of Electrical and Computer
Engineering, Rathbone Hall, Kansas State University, Manhattan, KS 66502, USA

E-mail address: fft@ksu.edu

19

	1. Examples in C
	1.1. Sample
	1.2. Explanation
	1.3. SIS
	1.4. SIR
	1.5. SAIS
	1.6. Multiple interacting pathogen spreading SI1SI2S

	2. Another simulate method
	2.1. Simulations

