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Abstract—In the rapidly evolving semiconductor industry, where
research, design, verification, and manufacturing are intricately linked,
the potential of Large Language Models to revolutionize hardware
design and security verification is immense. The primary challenge,
however, lies in the complexity of hardware-specific issues that are
not adequately addressed by the natural language or software code
knowledge typically acquired during the pretraining stage. Additionally,
the scarcity of datasets specific to the hardware domain poses a significant
hurdle in developing a foundational model. Addressing these challenges,
this paper introduces Hardware Phi-1.5B, an innovative large language
model specifically tailored for the hardware domain of the semiconductor
industry. We have developed a specialized, tiered dataset—comprising
small, medium, and large subsets—and focused our efforts on pre-
training using the medium dataset. This approach harnesses the compact
yet efficient architecture of the Phi-1.5B model. The creation of this first
pre-trained, hardware domain-specific large language model marks a
significant advancement, offering improved performance in hardware
design and verification tasks and illustrating a promising path forward
for AI applications in the semiconductor sector.

Index Terms—Large Language Model; Hardware Design; Hardware
Verification; Generative AI;

I. INTRODUCTION

Knowledge and language processing are crucial in multiple critical
aspects of the semiconductor industry, such as research, design,
verification, and manufacturing. These aspects involve complex in-
teractions among numerous entities, demanding high accuracy and
efficiency in information exchange. Artificial intelligence (AI) has
demonstrated significant potential in fields such as hardware design,
verification, and routing in recent years [1]–[5]. Nevertheless, it
should be noted that these AI applications do not yet fully exploit
the entirety of available knowledge or information, leading to errors
in their judgments based on partial data, relegating AI methodologies
to a supplementary role in the hardware domain. In contrast, Large
Language Models (LLMs) can extensively leverage the knowledge
conveyed and utilized through natural language and code during the
hardware design process. Given these capacities, LLMs possess the
potential to revolutionize the fields of hardware design and security
verification.

Fig. 1 illustrates the progression of stages in training LLMs
from raw datasets to assistants. In the hardware domain, research
endeavors are presently focused on In-Context Learning (ICL) strate-
gies, such as hardware bug fixing and verification assistant [6]–[8].
ICL does not alter parameters in LLMs; instead, it serves more
as a tactical approach than a fundamental solution for performance
enhancement. Consequently, irrespective of how the initial prompts
are optimized, the improvements in model performance cannot be
directly attributed to ICL. Supervised Finetuning (SFT) represents
another stage. Several groups attempted to employ SFT to address
hardware debugging and design challenges [9]–[11], but outcomes
often lack consistency. The primary challenge lies in the complexity
inherent to hardware-specific issues not adequately addressed by the
natural language or software knowledge acquired during the Pretrain
stage. Hence, developing a base model tailored to enhance robustness

Fig. 1. Four-Stage LLM-Based Assistant Development: Pretraining with
raw data for a base model; ideal response-driven supervised fine-tuning;
instruction-based reinforcement learning with few-shot examples for a de-
ployable model; culminating in user engagement via in-context learning. The
green cells highlight the contributions made in this paper.

in the hardware domain is in high demand and will significantly
strengthen the open-source hardware community.

However, the scarcity of datasets in the hardware domain presents
the initial challenge in Pretrain stage. This scarcity is not unique
to the hardware domain; datasets have become the most limited yet
critical resource in developing LLMs. Leading proprietary LLM GPT-
4 [12], as well as the most potent open-source LLM Llama2 [13],
do not furnish datasets. However, they share methodologies or
recipes for Pretrain dataset construction. Informed by the approaches
delineated in constructing open-source datasets RedPajama [14] and
the Stack [15], based on these recipes, we have crafted a Hardware
Domain-Specific Dataset. This dataset has been segmented into three
distinct tiers based on content volume: small, medium, and large.

In this study, we have adopted the Phi-1.5B model [16] architecture
and conducted pretraining of a hardware domain-specific LLM on
the medium dataset1. The Phi-1.5B model boasts performance that
rivals that of Llama2 7B despite being only a fifth of its size, an
attribute that underscores the model’s efficiency and effectiveness
in training. Moreover, the reduced scale of the model also implies
that the training costs for subsequent task-specific fine-tuning will
be significantly lower. We anticipate that this fully open-source
pretrained model will be a robust foundational support for a wide
array of tasks within the hardware domain, especially playing a
pivotal role in addressing hardware security challenges. Through
meticulously constructed hardware-specific datasets and customized
pre-trained LLMs, this paper aims to precisely address the unique
challenges in hardware domain tasks, achieving a deep understanding
and response to the needs of this field. Our contributions are mainly
reflected in the following aspects:
1) This paper conducted pretraining based on the Phi-1.5B model

structure, making it more closely aligned with the needs of the
hardware domain, enhancing the model’s performance and stabil-

1Our available computational resources informed this decision.



Fig. 2. Tokenization example: transform all text to a list of integers.

ity in hardware design and verification tasks. To our knowledge,
it is the first pretrained hardware domain-specific LLM.

2) We created three differently sized datasets rigorously screened
and optimized them to guarantee content relevance and quality,
thus laying a strong foundation for model training.

3) The pre-trained model is offered openly to the community, thus
supporting ongoing research, development, and innovation in both
academic and industrial spheres.

II. BACKGROUND: FOUNDATIONAL CONCEPTS

LLMs are not inherently capable of directly processing raw knowl-
edge and information. To make the information intelligible to these
models, we must first transform it into a sequence of integers that the
model can directly interpret. This transformation process is known
as Tokenization. As illustrated in Fig. 2, we employ the CodeGen-
mono [17] tokenizer to segment the raw text into discrete units,
referred to as tokens. Note that although a tokenizer’s vocabulary may
contain a vast array of words, a token does not always correspond
directly to a single word. For instance, the proprietary term SoC
depicted in the figure is split into two separate tokens: So and C.
Each token is subsequently assigned a unique numerical identifier
correlating to an index in the vocabulary list, generating an extensive
sequence of integers. Upon analyzing our dataset, we observed that,
on average, each token is equivalent to 0.74 words.

Fig. 3. Matrix representation of the batch structure in Hardware Phi-1.5B.

In the initial data handling phase, we encounter data characterized
by elements of disparate lengths and a discrete nature. To method-
ologically address this heterogeneity, we used the batch structure as
depicted in Fig. 3, which is organized into a matrix with dimensions
(B, T ). Here, B denotes the batch size—fixed at 125 for the
scope of our experimental analysis—and T encapsulates the maximal
context length that our model, designated as Phi-1.5B, is capable of
processing, the value of which is set at 2048 tokens.

Batch Size is the number of training examples utilized in one
iteration. A vast batch size may exceed the memory constraints,
precipitating out-of-memory errors. Conversely, an unduly small
batch size could result in excessively noisy gradient updates, thereby
detrimentally affecting model performance. For comparative context,
the Llama2 employs a batch size 64, correlating to a 64 × 4096
configuration. In contrast, the original MicroSoft Phi-1.5B utilizes a
batch set at 2048× 2048.

We employ a concatenation strategy to account for the inherent
variability in the lengths of data items within a dataset—which is
unlikely to match the specified value of T uniformly. This involves
unifying disparate data lengths and affixing an end-of-sequence
(EOS) token to the culmination of each data item. Subsequently, the
data undergoes a normalization process, uniformly resized to conform
to the dimensions (B, T ). In our research, the EOS token is denoted
by the symbol <|endoftext|>.

Fig. 4. Token prediction probability distribution with preferences after
pretrain.

Fig. 4 illustrates the pretraining process of the LLMs, explicitly
highlighting their capability to predict the next token. Within each
cell of the training batch, the model is only privy to the data in
the cells to the left within the same row. During the pretraining, the
model learns to predict the content of the right-side cell by utilizing
the context provided by the cells on the left, a paradigm known
as a causal language model (CLM). The green cell represents a
randomly selected token awaiting processing, the yellow area denotes
the preceding text utilized for prediction, and the red cell signifies
the prediction target. Hardware Phi-1.5B would select from the entire
vocabulary list comprising 50, 257 options. Through training, the
model transitions from uniform probability distribution across all
possible outcomes to allocating probabilities with a clear preference
toward a handful of potential choices.

III. PRETRAIN DATASET

A. Dataset Overview

In this study, we have developed a hardware domain-specific
dataset derived from various publicly accessible sources and bifur-
cated it into two main categories: code and natural language. Table I
delineates the primary constituents of the dataset.

For the code segment, we leveraged Google BigQuery GitHub
Public Datasets [18] , selecting projects that encompass hardware
design source code. Our selection was concentrated on three piv-
otal hardware programming languages: SystemVerilog, Verilog, and
VHDL. This concentration facilitated the incorporation of entire
repositories containing pertinent code into our dataset. Additionally,



TABLE I
OVERVIEW OF DATASET COMPOSITION: CATEGORIES, LANGUAGES,

SOURCES, AND SELECTION METHODS

Data Category Languages Sources Methodology or Selection Criteria
Hardware Design

Code
SystemVerilog,
Verilog, VHDL

Google BigQuery Github,
the Stack

Filtering GitHub repositories
for hardware design code

Hardware Nature
Language Knowledge English

RedPajama CommmolCrawl,
ArXiv, StackExange, Books,
C4, Wikipedia), TrustHub,

Cad4Assurances, CWE

Aggregating content from the
hardware domain

to ensure both legal compliance and open accessibility, we meticu-
lously selected projects under specific open-source licenses.

In parallel, we curated a comprehensive hardware security dataset,
amalgamating both code and natural language content from emi-
nent hardware security sources, including TrustHub [19], CAD for
Assurance of Electronic Systems [20] , and Common Weakness
Enumeration (CWE) [21] . This compilation enriches our dataset with
current and vital insights into hardware security, encompassing codes,
their descriptions, best practices, and security recommendations for
hardware design.

For practical applications in Code Language Models, integrating
natural language data is commonly recognized as beneficial for
enhancing model performance [22]. Hence, we adopted and modified
the Redpajama dataset construction methodology with a focused
segmentation due to the relative rarity of hardware-specific content.
The Redpajama dataset, an expansive corpus exceeding 1.2 trillion
tokens, was segmented to enhance hardware-related discourse. The
first segment includes data from specialized platforms such as Arxiv ,
Books, Wikipedia, and StackExchange; the second segment is derived
from broader internet content via CommonCrawl and C4.

Table II provides a comprehensive overview of the rigorous pro-
cesses applied to verify and cleanse our dataset, ensuring its quality
and integrity. These steps are crucial for maintaining the dataset’s
reliability and usability in research:
• Verification and Cleansing: This step involves identifying syntactic

errors and reviewing natural language descriptions to ensure data
accuracy. It combines automated scripts for efficiency and manual
reviews for precision, addressing the dual aspects of mechanical
accuracy and contextual relevance.

• Redpajama Dataset Filtering: Here, we filter hardware security
content using targeted keywords. This step is vital for maintaining
the dataset’s focus and relevance to the field of hardware security,
ensuring that the dataset remains aligned with its intended purpose.

• Text Processing: This phase includes several processes: NFC
normalization, short content filtering, and removing punctuation
and unnecessary spaces. The use of datasketch [23], a tool known
for its efficiency in handling large datasets, helps streamline this
process, improving data quality and consistency.

• De-duplication: To enhance the dataset’s utility, this step employs
indexing and the MinHash technique for de-duplication, again
utilizing datasketch. De-duplication is critical for eliminating re-
dundant data, enhancing overall quality, and making the dataset
more manageable and effective for users.

Each of these steps plays a vital role in refining the dataset. This
meticulous process ensures that the dataset is extensive but also
precise and reliable, catering to the nuanced needs of hardware
security research.

B. Visual and Quantitative Analysis

Fig. 5 visually represents our dataset’s construction and seg-
mentation. The smallest dataset comprises information related to
hardware security and the source code of hardware design. In this
dataset, the proportion of CWE is approximately 0.0014468%, yet its
significance is paramount. This CWE section contains over 70, 000
tokens. Although it represents a minor proportion of the dataset’s total

TABLE II
STEPS IN DATA VERIFICATION, CLEANSING, AND PROCESSING WITH

APPLIED TOOLS AND METHODS

Step Description Tools/Methods

Verification & Cleansing Identifying syntactic errors;
Reviewing natural language descriptions.

Automated scripts,
Manual review

Redpajama Dataset Filtering Filtering content related to
hardware using keywords Keyword filtering

Text Processing NFC normalization; Filtering short content;
Removing punctuation, spaces, etc. datasketch

De-duplication Indexing and de-duplication
using MinHash datasketch

Fig. 5. Visual Representation of Dataset Construction and Segmentation

TABLE III
BREAKDOWN OF DATASETS BY SIZE IN TOKENS

Dataset Name Dataset Size (Tokens)
Smalt 4, 838, 384, 488

Medium 10, 382, 663, 651
Large 22, 616, 170, 041

volume, CWE information is crucial, offering critical insights into
security vulnerabilities and weaknesses relevant to hardware security.
While numerically limited, these data are of high quality and pro-
fessionalism, reflecting common security weaknesses and potential
risks in hardware design. Hence, despite their small percentage in the
overall dataset, the CWE elements are indispensable and significantly
contribute to in-depth hardware security research.

Expanding to the second dataset, the medium dataset evolves
from the smaller dataset and incorporates information from ArXiv,
StackExchange, Books, and Wikipedia sources. This dataset provides
a broader perspective and information base, supporting a more
comprehensive analysis.

Finally, the large dataset further extends the scope, encompassing
all contents of the medium dataset and a vast array of data from
C4 and CommonCrawl. The diversity and scale of this dataset offer
abundant resources.

To further quantify, Table III presents a detailed breakdown of
the three datasets in size, measured by token counts, facilitating a
direct comparison between the small, medium, and large datasets.
This information is critical for users in selecting the most appropriate
subset for their research needs. As an open-source dataset, this
flexibility empowers users to select a subset that aligns with their
computational resources and specific requirements.

IV. HARDWARE PHI-1.5B MODEL PRETRAIN

A. Model Architecture

The architecture of Hardware Phi-1.5B strictly adheres to the de-
sign principles of the original Phi-1.5B and its variants. It comprises a
Transformer structure [24] with 24 layers, 32 heads, and a dimension
of 64 for each head, resulting in a context length of 2, 048. We
incorporated the Flash Attention 2 [25] during the training phase to



expedite the training process. To ensure optimal compatibility with
tools that utilize LLMs, we opted to follow the Phi-1.5B style and
employ the codegen-moni tokenizer.

B. Model Training Methodology

The key setups in pretraining Hardware Phi-1.5B are listed below.
1) Initialization Strategy: The model’s training is initiated with a

state of random weights. We meticulously initialized the weights of
the linear and embedding layers by employing a normal distribution
with a mean of 0 and a standard deviation of 0.02. This approach was
adopted to prevent the extremes of weight magnitude, thus averting
the well-known issues of gradient disappearance or explosion. Addi-
tionally, we set the biases in linear layers to zero, fostering a neutral
starting point that prevents any early bias toward specific outcomes.

2) Training Configurations: Our training configuration was stan-
dardized with a fixed learning rate of 2e − 4 and a weight decay
factor of 0.1, mirroring the training regimen of the Phi-1.5B model.

3) Optimizer Settings: The Adam optimizer [26], equipped with
beta momentum values of 0.9 and 0.98 and an epsilon value of 1e−7,
was the chosen algorithm for its reliable performance in similar tasks.

4) Efficiency Strategies: To optimize memory usage and training
efficiency, we adopted fp16 mixed precision training. Additionally,
we utilized the Fully Sharded Data Parallel [27], enabling the
distribution of the model’s parameters across all available GPU
resources. This was complemented by an effective communication
strategy aimed at reducing training overheads. For further mem-
ory optimization, the transformer blocks were integrated with the
auto_wrap_policy, and to strike a balance between memory
use and computation speed, we enabled activation checkpointing.

5) Evaluation Framework: Given the substantial size of our
dataset, we set a training termination criterion at 750, 000 iterations
and 30, 000 steps. To monitor the model’s performance progression
and mitigate the potential of overfitting, we instituted a checkpoint
mechanism that allowed the model’s state to be saved and evaluated
at every 1, 000 step, ensuring we could capture performance metrics
systematically throughout the training process.

V. EXPERIMENT AND RESULT

Our training platform is constructed on a server operating with
Ubuntu 20.04.6 LTS, equipped with an Intel(R) Xeon(R) Silver
4314 CPU (2.40 GHz, 64 cores), 251 GB of memory, and dual
NVIDIA A100 80 GB graphics processing cards. This configuration
not only provides substantial computational power but also ensures
ample memory when dealing with large models. The CUDA 12.2
and PyTorch 2.1.0 versions selected for our work fully exploit the
hardware potential, optimizing the model training process. Supported
by this high-performance hardware, our platform can achieve a
throughput of 1.07 batches per second while maintaining approxi-
mately 100T floating-point operations per second (flops/sec) and a
token processing speed of around 11k per second.

In this experiment, we have designated 30k training steps, culmi-
nating in a total training duration of 8 days, 2 hours, 43 minutes,
and 22 seconds. This training cycle was determined post-evaluation
of the anticipated model complexity and the requisite time for
convergence. Additionally, considering the power consumption of
GPU devices and based on previous studies [28] , we have computed
the energy efficiency during the training process. We estimate that
this training has produced approximately 90kg of carbon dioxide
equivalent greenhouse gas emissions.

Fig. 6 presents the variation in loss and perplexity on the validation
dataset. Loss is an indicator that measures the discrepancy between
model predictions and actual values, with Mean Squared Error (MSE)
and Cross-Entropy Loss being commonly used metrics [29]. A high
loss indicates a greater disparity between the model predictions and

Fig. 6. Validation Loss and Perplexity During Training

A System-On-a-Chip (SoC) has a lot of functionality, but it
may have a limited number of pins or pads. A pin can only
perform one function at a time. However, it can be configured
to perform multiple different functions. This technique is called
pin multiplexing.

Fig. 7. Training Data: CWE-1189: Improper Isolation of Shared Resources
on System-on-a-Chip (SoC)

actual values, hence a lower model performance. Perplexity [30],
particularly within natural language processing and language models,
indicates model performance. It is the exponentiation of the cross-
entropy loss and offers an average branching factor per word, that
is, the model’s uncertainty about the next word given the preceding
ones. In our training context, a lower perplexity suggests a more
precise understanding of the data by the model.

Initially, models exhibit high loss and perplexity, reflecting their
preliminary adaptation to the data during the learning process. As
training progresses, these metrics generally decrease, signifying the
model’s advancements in learning. As in Fig. 7, we have conducted
text continuation experiments on the CWE-1189 [31] security vul-
nerability description. In our experiments, we generated text using
models at different training stages—the initial model, the model after
10k steps, the model after 20k steps, and the final model at 30k steps
training.

In Fig. 8, the initial model’s generated text lacked coherence
and logic, indicating that at the onset of training, the model’s
understanding of language structure had yet to be established. This
stage’s model output is typically a meaningless string of words,
reflecting the model’s randomness and immaturity.

After 10k training steps, the model demonstrated correct word
spelling as in Fig. 9, signifying that it had begun to capture the
basic language rules, such as word boundaries and fundamental
grammatical structures. However, the generation of longer sentences
remained unnatural, suggesting an insufficient grasp of complex
structures.

Following 20k training steps, as shown in Fig. 10, the model’s
generated text began to show readability, albeit with occurrences of
looping and repetition. This may be attributed to the model finding a
”comfort zone” in certain local minima and tending to repeat patterns
discovered in the training data rather than generating novel content.

tributePAfort MoorFontSizeestone Karl Norris intens Norris
informative refinement kg 278 impulses Yugoslavinnamon
Buddha Performance Divine clinch interacts Performance Sci-
entology alertinsulaes inex Harding Gene oral Norris heinous
risk Kremlin Harding546 crossings

Fig. 8. Generated sample at initialization.



if 0 = Pin multiplexing else do you need to change those pin
numbers to the least expensive chips? A: The pin number of
the SoC has to be the same in both the input and output pins,
with no extra pins on the chip connected directly. There are
several sources of noise, either from the FPGA or a FPGA or
other components like these may be bad quality.

Fig. 9. Generated sample at 10k step, 250k iterations of training.

On-board: I/O multiplexing I/O multiplexing For example: I/O
multiplexing I/O multiplexing I/O multiplexed in between As
mentioned in the link, a physical system-on-a-chip (SoC), also
known as a Chip-on-a-Chip (SoC), offers pinout, multiplexer
and multiplexer connected in a single interconnect.

Fig. 10. Generated sample at 20k steps, 500k iterations of training.

Finally, the model post 30k training steps exhibited a more mature
understanding of language, integrating natural language capabil-
ity and domain-specific knowledge in text generation in Fig. 11.
Nonetheless, due to the lack of task-specific fine-tuning, the model
might not adapt well to specific contexts or answer complex queries.
This highlights the model’s limitations as a base model: it is adept
at predicting the next token in text and, hence, tends to complete
a document, but for more advanced tasks, further optimization and
adaptation may be necessary.

Through these phases, we can observe the model’s progression in
understanding and generating language. Nevertheless, to become a
practical assistant, the model requires further training and customized
fine-tuning. Future work will focus on enhancing the model’s perfor-
mance while reducing its training process’s environmental impact.

VI. RELATED WORK

Compared to the singular pursuit of developing Large Language
Models for the goal of achieving General Artificial Intelligence, an
increasing body of research is focusing on constructing specialized,
domain-specific datasets and training LLMs to nurture systems that
demonstrate expert-level proficiency within specific domains.

In the medical field, due to the highly complex nature of the
expertise required and the constraints imposed by privacy regulations,
general LLM typically fails to provide sufficient comprehensive
coverage. As a result, researchers are turning to strategies involv-
ing complete pretraining, supervised finetuning, and reinforcement
learning approaches. K. Singhal has developed MultiMedQA, a com-
posite benchmark integrating six existing medical question-answering
datasets, and a new online search medical question dataset, Health-
SearchQA. Utilizing this benchmark, Google has further trained
PaLM and its variant, FLAN-PaLM [32]. L. Y. Jiang has adopted

In the context of embedded-edge technologies, in the proces-
sor, an edge device is an integrated hardware device. An edge
device is an embedded computation device that provides the
capability to operate at all the levels of the chip. In the context
of processors, it is more common that an embedded compu-
tation device is integrated and integrated into an embedded
system. In the above example, for an embedded computation
device, it is referred to the processor as computing core. It also
refers to the SoC device when it is the peripheral, embedded
system, or embedded system controller. On the other hand, an
embedded system is an embedded systems management device
that provides the capability to communicate with the

Fig. 11. Generated sample at 30k steps, 750k iterations of training.

a BERT-based pretraining and finetuning to develop NYUTron,
designed to offer guidance at clinical care points [33].

In the realm of hardware security, research approaches vary
depending on the perspectives of researchers. Some contend that
existing commercial general-purpose LLMs, such as ChatGPT, are
sufficient to support formal verification tasks, relying on OpenAI’s
continuous enhancements of ChatGPT to improve the performance of
their tools. For instance, M. Orenes-Vera has attempted to use Chat-
GPT for RTL formal verification [34]. M. Chen, on the other hand,
has employed codex, ChatGPT, and a Codegen variant fine-tuned
for Verilog [10] to generate assertions directly [35]. However, other
researchers argue that proprietary knowledge in the hardware domain
necessitates custom dataset training for models. They believe that
their research outcomes will be more pronounced as access to more
domain-specific data and computational resources becomes abundant.
For example, S. Thakur has finetuned for Verilog generation [10], and
W. Fu has also finetuned an LLM for hardware debugging based on
version control information [9].

On the other hand, there can be significant variances in the
usage of specialized terminology between different domains, even
evident in the software and hardware fields. For example, Port
typically refers to a communication interface in software engineering,
whereas it denotes a physical interface on electronic devices in
hardware design. Cache in software signifies a temporary storage
area to expedite data access. At the same time, in hardware, it
might refer to a small-capacity, high-speed storage located between
the CPU and main memory. Moreover, Pipeline can represent a
sequence of processing steps in software development, whereas, in
hardware design, it indicates a specific technique for parallel data
processing. Terms like Bus, Driver, Register, and Core also possess
dual meanings; their conflation can lead to confusion and impair the
model’s understanding and predictions.

In light of this, our research endeavors are concentrated on the
development and use of datasets tailored explicitly for the hardware
domain for pretraining, and aiming to construct a base model
that paves the way for breakthroughs in the meticulous finetuning
of domain-specific models. We anticipate that this approach will
significantly enhance the model’s performance in comprehending
and handling the aforementioned complex terminologies, surpassing
the capabilities of existing general code language models (such as
CodeLlama [22]) and natural language models (such as BERT [36]
and GPT-2 [37]).

VII. CONCLUSION AND FUTURE WORK

In this study, we have explored the potential of Large Language
Models advancing hardware design, Electronic Design Automation,
and hardware security. Recognizing that hardware design shares
certain formal similarities with natural language and software design
yet diverges fundamentally in its core complexities, we have focused
on developing a specialized LLM for the hardware domain, estab-
lishing a robust foundational dataset. This endeavor not only breaks
new ground in conventional approaches to the hardware domain but
also paves the way for novel perspectives in future research and
applications.

Moving forward, we aim to continue advancing this project,
focusing on pre-training the base model while maintaining and
updating our dataset to ensure its relevance and contemporaneity.
We eagerly anticipate the fine-tuning and application of this model
in specific areas within the hardware design domain, particularly in
addressing distinct design challenges and security issues. We believe
our work will offer new insights and solutions for research and
practice in hardware design, verification, and security, potentially
catalyzing transformative changes in these fields.
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